Impaired spatial learning and defective theta burst induced LTP in mice lacking fibroblast growth factor 14.

نویسندگان

  • David F Wozniak
  • Maolei Xiao
  • Lin Xu
  • Kelvin A Yamada
  • David M Ornitz
چکیده

Spinocerebellar ataxia 27 (SCA27) is a recently described syndrome characterized by impaired cognitive abilities and a slowly progressive ataxia. SCA27 is caused by an autosomal dominant missense mutation in Fibroblast Growth Factor 14 (FGF14). Mice lacking FGF14 (Fgf14(-/-) mice) have impaired sensorimotor functions, ataxia and paroxysmal dyskinesia, a phenotype that led to the discovery of the human mutation. Here we extend the similarities between Fgf14(-/-) mice and FGF14(F145S) humans by showing that Fgf14(-/-) mice exhibit reliable acquisition (place learning) deficits in the Morris water maze. This cognitive deficit appears to be independent of sensorimotor disturbances and relatively selective since Fgf14(-/-) mice performed similarly to wild type littermates during cued water maze trials and on conditioned fear and passive avoidance tests. Impaired theta burst initiated long-term synaptic potentiation was also found in hippocampal slices from Fgf14(-/-) mice. These results suggest a role for FGF14 in certain spatial learning functions and synaptic plasticity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strain-dependent differences in LTP and hippocampus-dependent memory in inbred mice.

Many studies have used "reverse" genetics to produce "knock-out" and transgenic mice to explore the roles of various molecules in long-term potentiation (LTP) and spatial memory. The existence of a variety of inbred strains of mice provides an additional way of exploring the genetic bases of learning and memory. We examined behavioral memory and LTP expression in area CA1 of hippocampal slices ...

متن کامل

Age-dependent and selective impairment of long-term potentiation in the anterior piriform cortex of mice lacking the fragile X mental retardation protein.

Synaptic function and plasticity were studied in mice lacking the fragile X mental retardation protein (FMRP), a model for the fragile X mental retardation syndrome. Associational connections were studied in slices of anterior piriform (olfactory) cortex, and Schaffer-commissural synapses were studied in slices of hippocampus. Knock-out (KO) mice lacking FMRP were compared with congenic C57BL/6...

متن کامل

Brain-derived neurotrophic factor rescues synaptic plasticity in a mouse model of fragile X syndrome.

Mice lacking expression of the fragile X mental retardation 1 (Fmr1) gene have deficits in types of learning that are dependent on the hippocampus. Here, we report that long-term potentiation (LTP) elicited by threshold levels of theta burst afferent stimulation (TBS) is severely impaired in hippocampal field CA1 of young adult Fmr1 knock-out mice. The deficit was not associated with changes in...

متن کامل

Hippocampal cGMP-dependent protein kinase I supports an age- and protein synthesis-dependent component of long-term potentiation but is not essential for spatial reference and contextual memory.

cGMP-dependent protein kinase I (cGKI) is expressed in the hippocampus, but its role in hippocampal long-term potentiation (LTP) is controversial. In addition, whether cGKI is involved in spatial learning has not been investigated. To address these issues, we generated mice with a hippocampus-specific deletion of cGKI (cGKIhko mice). Unlike conventional cGKI knock-out mice, cGKIhko mice lack ga...

متن کامل

Hippocampal metaplasticity is required for the formation of temporal associative memories.

Metaplasticity regulates the threshold for modification of synaptic strength and is an important regulator of learning rules; however, it is not known whether these cellular mechanisms for homeostatic regulation of synapses contribute to particular forms of learning. Conditional ablation of mGluR5 in CA1 pyramidal neurons resulted in the inability of low-frequency trains of afferent activation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neurobiology of disease

دوره 26 1  شماره 

صفحات  -

تاریخ انتشار 2007